skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sargeant, Dane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Modeling springback in sheet materials is challenging in aluminum alloys, especially when a complex strain path is applied. This paper presents results from pure bending experiments on AA 6016-T4 sheet material, where various plastic pre-strains were first applied prior to bending. A crystal plasticity based elasto-plastic selfconsistent (EPSC) model that includes the effect of backstress in the hardening law was used to predict final part shape after unloading. The backstress term in the model was calibrated using geometrically necessary dislocation (GND) content, measured experimentally by high resolution electron backscattered diffraction (HREBSD). The EPSC model predicted springforward angles for unstrained 1 mm AA 6016-T4 sheet with an error of 0.4% (0.3◦) in the worst case, while the J2 plasticity isotropic model overpredicted springforward angles by as much as 2.4% (2◦). For cases where uniaxial, plane-strain, and biaxial pre-strains were first imparted to the sheets before bending, the EPSC model with backstress accurately predicted the transition from springforward to springback, while the EPSC model without backstress did not. Backstress influence on model accuracy, which increased with greater pre-strain levels, appears to be correlated to the statistically stored dislocation (SSD) density computed by the model at the end of each pre-strain step. 
    more » « less